

BétonlabPro 3 Leçon N°10 Simulation de formules de béton

François de Larrard

Laboratoire Central des Ponts et Chaussées Centre de Nantes

Plan de la leçon

- Sélection des constituants
- Options de calculs
- Entrée d'une formule et ajustements
- Sauvegarde
- Utilisation d'entraîneurs d'air
- Granularité Diagramme de remplissage
- Exportation de données
- Aide en ligne
- Conclusion

Sélection des constituants

Sélection	×	
Dossiers disponibles Copie de Matériaux génériques.cst essais pompage dk.cst Granulats.cst <u>Matériaux génériques.cst</u> simulations filler calcaire.cst	<u>O</u> K <u>A</u> nnuler	
Constituants disponibles Caillou 5/12,5 Cendre volante Ciment CPA CEM I Concassé 0/4 Concassé 0/4 poreux Concassé 12.5/20 Concassé 2/6 Concassé 20/50	Ajou <u>t</u> er <u>E</u> nlever	
- choisir un dossier de constituants (.cst) - les constituants disponibles apparaissent	Ecra	an N°3

LCPC

Laboratoire Cen des Ponts et Cha

Sélection des constituants (suite)

- en doublecliquant sur les constituants disponibles, ceux-ci sont recopiés dans l'écran inférieur

- en cas d'erreur, on peut aussi en enlever

> Laboratoire Central des Ponts et Chaussées

LCPC

Options de calculs

Entrée d'une formule et ajustements

BétonlabPro 3 Fichier Edition Constituants Sélection Modif	cations ?		
Mom des constituants			
6 G1 (%) 0	<u>G</u> âcher	Gâchée n°	
	<u>O</u> ptimiser	S1 (kg/m3) C1 (kg/m3)	
S C1 (kg/m3) 0	Aucune gachée-	SP1 (kg/m3) Eau (kg/m3) G1 (%)	
Eau eff (kg/m3)	Gr <u>a</u> nularité	G2 (%) \$1 (%) Taux de saturation (%)	
écran de	Bemplissage	Taux de superplastifiant (%) Eau eff Air total (%)	
aisie de la		AEA Rapport G/S Eeff/C	
omposition		Environnement C + kA Eeff / (C + kA)	
Coût fixe 30		Densité Alfaissement (cm) (c28 (MPa)	
% moyen en alcalins actifs dans l'eau	0	Prix	
≈ maximum en alcalins actifs dans l'eau	0		- écran de
Confinement: Aucun			simulations
		<u>.</u>	

BétonlabPro 3 - Leçon N°10

🇱 Bétonlab	Pro 3
Fichier Editio	n Constituants Sélection Modifications ?
Sterner Nom	Consultation Banque de constituants Collimation
G1	Calibration des granulats Calibration des pouzzolanes Calibration des laitiers 12.5/20
G2	Matériaux génériques.cst\Concassé 5/12.5
51	Matériaux génériques.cst\Roulé 0/5
C1	Matériaux génériques.cst\Ciment CPA CEM I
SP1	Matériaux génériques.cst\Superplastifiant mélamine
Eau	u eff (kg/m3) 0 Granularité S1 (%) Granularité Faux de saturation (%) Taux de superplasitiant (%) Fau eff
- possibilité de	Load of it Air total (%) AEA Rapport G/S
revoir les	Eeff/C ui Environnement C + kA
constituants	x0 Eeff / (C + kA) Densité Affaissement (cm)
choisis, et leurs	yen en alcalins actifs dans l'eau
caracteristiques	ximum en alcalins actifs dans l'eau 0
Con	finement: Aucun
Laboratoire Central	
des Ponts et Chaussées	

LCP

*****	S NOM DES CONSTITUANTS			
	🔅 Simulations			
	Composition		Gâchée n°	1
		Gâcher	G1 (kg/m3)	743,9
			G2 (kg/m3)	277,5
	G2 (%) 15	I and	S1 (kg/m3)	823,7
	51 (2)	Uptimiser	C1 (kg/m3)	350
			SP1 (kg/m3)	0
G2 →100 %	S C1 (kg/m3) 350		Eau (kg/m3)	183,9
	SP1 (%)	Beton n*1	G1 (%)	40
			G2 (%)	15
	Eau eff (kg/m3) 180	Granularitá	S1 (%)	45
			Taux de saturation (%)	0,75
		1	Taux de superplastifiant (%)	0
		<u>R</u> emplissage	Eau eff	180
			Air total (%)	1,5
	Agent entraîneur d'air?		AEA	Non
	Non		Rapport G/S	1,24
			Eeff/C	0,514
	C Uu		Environnement	XC3
		98 18	C + kA	350
	Environnement XC3 -		Eeff / (C + kA)	0,514
s eau eff. 1 1 m ³ 2			Densité	2,379
	Coût fixe 30		Affaissement (cm)	10,9
			fc28 (MPa)	45,7
air 🗸	% moyen en alcalins actifs dans l'eau	0	Prix	70,76
	% maximum en alcalins actifs dans l'eau	0		
	Confinement: Aucun			

	S NOM DES CONSTITUANTS				
	🗱 Simulations				
	Composition	11	Gâchée n°	1	
	61 (%)	<u>G</u> âcher	G1 (kg/m3)	743,9	
			G2 (kg/m3)	277,5	
	S G2 (%) 15	Ontining	S1 (kg/m3)	823,7	
	a S1 (%)		C1 (kg/m3)	350	
			SP1 (kg/m3)	0	
	S C1 (kg/m3) 350		Eau (kg/m3)	183,9	
	SP1 (%)	Beton n*1	G1 (%)	40	
	E		G2 [%]	15	
		Granularité			
			Taux de saturation (%)	— Lau calcul	ee en l
		Dura Line	Faux de superplastifiant (%)		
Equipartica		<u>H</u> emplissage	Air total (%)	—l eau d'aiou	tsur l
cau entree		(Carl			
	Agent entraineur d'air?		Bapport G/S	dranulats s	secs l
sous forme	(• Non		Eeff/C		
	C Oui		Environnement	XC3	
a eau			C + kA	350	
	Environnement VC2		Eeff / (C + kA)	0,514	
efficace (en			Densité	2,379	
	Coût fixe		Affaissement (cm)	10,9	
kg/m3	,		fc28 (MPa)	45,7	
	% moyen en alcalins actifs dans l'eau	0	Prix	70,76	
	% maximum en alcalins actifs dans l'eau				
		, jo			
	Confinement: Aucun				

Superplastifiant entré en % d'extrait sec (actif) par rapport au poids de ciment seul

Composition		1	Gâchée n°	1	
61 (%)	40	<u>G</u> âcher	G1 (kg/m3)	743,9	
	140		G2 (kg/m3)	277,5	
G2 (%)	15	Optimizer	S1 (kg/m3)	823,7	
S1 (%)	45		C1 (kg/m3)	350	
Je + (-e)	110	1.0	SP1 (kg/m3)	0	
C1 (kg/m3)	350		Eau (kg/m3)	183,9	
SP1 (%)	0	Beton n*1	G1 (%)	40	
			G2 (%)	15	
Eau eff (kg/m3)	180	Granularitá	S1 (%)		
			Taux de saturation (%)	- Supern	lastifiant
		· · · · · · · · · · · · · · · · · · ·	Taux de superplastifiant (%)		aotinant
		<u>R</u> emplissage	Eau eff	Alualea —	on kalm
			Air total (%)		cii ky/iii
Agent entraîneur c	l'air?		AEA		
Non			Rapport G/S	1,24	
C 0.4			Eetf/C	0,514	
C UU			Environnement	XU3	
		10	L+KA	350	
Environnement	XC3 👻		Eeff / (C + KA)	0,514	
	,		Densité	2,379	
Coût fixe	30		Affaissement (cm)	10,9	
			Itc28 (MPa)	45,7	
% moyen en alcalir	ns actifs dans l'eau	0	Prix	70,76	_
% maximum en alc	alins actifs dans l'eau	0			
% moyen en alcalir % maximum en alc	ns actifs dans l'eau alins actifs dans l'eau	0 0	rczs (MPa) Prix	45,7	

Entrée d'une formule et ajustements

🔀 Béta	onlabPro 3						
Fichier	Edition Constituants 5	election Modificat	tions ?				
	Nom des constituants						
	Composition			Gâchée n°	1	2	3
			Gâcher	G1 (kg/m3)	743.9	740.1	735.9
G	[G1 (%) 40			G2 (kg/m3)	277,5	276,1	274,5
I S	G2 (%) 15			S1 (kg/m3)	823,7	819,5	814,9
	S1 (%)		<u>Uptimiser</u>	C1 (kg/m3)	350	350	350
14				SP1 (kg/m3)	0	0	0
S	C1 (kg/m3) 350			Eau (kg/m3)	183,9	188,9	193,8
	SP1 (%)		Beton n°3	G1 (%)	40	40	40
	E			G2 (%)	15	15	15
	Eau err (kg/m3)		Granularité		45	45	45
				Laux de saturation (%)	0,75	0,75	0,75
			Beneliusaa		190	195	190
			<u>Hempilssage</u>	Air total (%)	100	14	13
	Cristen al air a			AEA	Non	Non	Non
Aiustement	S:			Rapport G/S	1,24	1,24	1.24
off of due				Eeff/C	0,514	0,529	0,543
effet du				Environnement	XC3	XC3	XC3
dosado on				C + kA	350	350	350
ubsaye en	bement	XC3 V		Eeff / (C + kA)	0,514	0,529	0,543
efficace				Densité	2,379	2,375	2,369
	- coar nad	30		Affaissement (cm)	10,9	13,9	16,4
		,		[Ic28 [MPa]	45,7	44,1	42,4
ICPC Internet	% moyen en alcalins actif	s dans l'eau	0	Prix	/0,/6	70,69	70,61
Labora							
des Ponts et Ch	aussees	Béto	onlabPro 3	B - Leçon N°10 E	cran	N°12	

🗱 Simulations						
Composition		Gâchée n°		1	2	3
[G1 (%)	Gâcher	G1 (kg/m3)		743,9	740,1	735,9
d1 (%) 40		G2 (kg/m3)		277,5	276,1	274,5
G2 (%) 15		S1 (kg/m3)		823,7	819,5	814,9
S1 (%)	Uptimiser	C1 (kg/m3)		350	350	350
		SP1 (kg/m3)		0	0	0
C1 (kg/m3) 350		Eau (kg/m3)		183,9	188,9	193,8
ISP1 (%)	Beton n°1	G1 (%)		40	40	40
		G2 (%)		15	15	15
Eau eff (kg/m3) 180	Granularitá	S1 (%)		45	45	45
		Taux de saturatio	n (%)	0,75	0,75	0,75
		Taux de superpla	stifiant (%)	0	0	0
	<u>R</u> emplissage	Eaueff		180	185	190
		Air total (%)		1,5	1,4	1,3
Agent entraîneur d'air?				Non	Non	Non
📀 Non	En cliqi	uant		1,24	1,24	1,24
C Dui	dana		/	0,514	0,529	0,543
, ou	uans ur	Ie		XL3	XL3	XL3
	colonne	on e		300	350	350
Environnement XC3 -		, 011		0,514	0,523	0,043
	I recopie	la		2,373	12.0	2,303
Coût fixe 30		tet and		45.7	44.1	10,4
	l compos	Sition		70.76	70.69	70.61
% moyen en alcalins actifs dans l'eau	dancior			10,10	70,05	70,01
er · · · · · · · ·	uans ce	ile de				
% maximum en alcalins actirs dans l'eau	l la gâch	ée				
	l ia guon					
	courant	te				1
Laboratoire Central	L					

des Ponts et Chaussées

Sauvegarde

- Le logiciel peut sauvegarder une série de gâchées, sous forme d'un fichier .btl
- Il conservera en même temps les fichiers des constituants ayant servi aux simulations
- Si on modifie les fichiers des constituants, et si on ouvre ultérieurement le fichier de gâchées, on aura accès aux constituants originaux (« Réouverture temporaire.cst »)

Sauvegarde (suite)

Sauvegarde (suite)

BétonlabPro 3 - Leçon N°10

Sauvegarde (suite)

Bétonla	bPro 3					
er Editio	on Constituants Sélection Modifications	?				
🖥 Nom	des constituants					
G1	féouverture temporaire, cs <mark>t/Concassé 12.</mark>	5/20				
G2	réouverture temporaire.cst\Concassé 5/1	2.5		1	2	3
01				841,5	836,7	831,6
SI	réouverture temporaire.cst\Houlé 0/5			279	277,4	275,8
C1	réouverture temporaire.c: t\Ciment CPA C	EMI		736,3	732	/2/,6
CP1	réquirature temperaire ett Superplactifier	at málamina		350	350	350
51 1	Treodiverture temporaire.cs.(15 operprastinal	it meiamine		184.1	189.1	194
		D	61 (%)	45	45	45
	SP1 (%) 0	Beton n 3	G2 (%)	15	15	15
	Eau eff (kg/m3) 190	E F	S1 (%)	40	40	40
		Gr <u>a</u> nularité	Taux de saturation (%)	0,75	0,75	0,75
			Taux de superplastifiant (%)	0	0	0
		<u>R</u> emplissage	Eau eff	180	185	190
			Air total (%)	1,1	1	1
	Agent entraîneur d'air?		AEA	Non	Non	Non
	• Non		Rapport G/S	1,522	1,522	1,522
			Eeff/C	0,514	0,529	0,543
	C Oui		Environnement	×0	×0	XO
		-	C + kA	350	350	350
				0.004	0.500	0.540

Utilisation d'entraîneurs d'air

- Sans entraîneur d'air, BétonlabPro estime le volume d'air occlus dans le béton *en place*
- Avec entraîneur d'air, l'utilisateur entre la teneur en air (occlus + entraîné) qu'il recherche
- Lors des premiers essais en laboratoire, il sera nécessaire de rechercher la dose d'AEA (adjuvant entraîneur d'air) nécessaire

- Exemple: béton dosé à 350 kg/m3 de ciment
- Squelette : 60 % de gravillon/40% de sable
- Affaissement recherché = 100 mm
- Teneur en air recherchée = 5 %

8 L	anni nes ennstituants							
1	Simulations						(_ 🗆 🔀
	Composition		Gâchée n°	1	2	3	4	5
	G1 (%)	Gâcher	G1 (kg/m3)	1109	1097,6	1094,2	1033,7	1040,1
	01 (%)		S1 (kg/m3)	731,5	724,1	721,8	681,9	686,1
L	S1 (%) 40	0.555	C1 (kg/m3)	350	350	350	350	350
L	C1 (kg/m3) 350	<u>Upamiser</u>	Eau (kg/m3)	184,1	194	197	196,8	192,8
L			G1 (%)	60	60	60	60	60
L	Eau eff (kg/m3) 189		S1 (%)	40	40	40	40	40
L		Beton n°5	Eau eff	180	190	193	193	189
L			Air total (%)	1,6	1,3	1,2	5	5
L		Granularitá	AEA	Non	Non	Non	Oui	Oui
L			Rapport G/S	1,516	1,516	1,516	1,516	1,516
L			Eeff/C	0,514	0,543	0,551	0,551	0,54
L		<u>R</u> emplissage	Environnement	XO	XO	XO	XO	XO
L			Affaissement (cm)	0	7,9	10,1	12,2	10
L	Agent entraîneur d'air?		fc28 (MPa)	50,2	46,6	45,6	38	39,3
L	C Non							
	🖲 Oui 🛛 Air total 📘 🏾 %							
	Environnement X0 -							
	Coût fixe 30							
	% moyen en alcalins actifs dans l'eau	0						
	% maximum en alcalins actifs dans l'eau	0						

des Ponts et Chaussées

Laboratoire Central des Ponts et Chaussées

- Gâchées d'essai
- Dosage d'AEA
 retenu = 0,05%
- Concentration solide 20%
- Dosage au m³

 $=\frac{0,05}{100}.\frac{350}{0,2}=0,875\,\text{kg/m}^3$

- Formule théorique retenue:
 - gravillon = 1040 kg/m³
 - sable = 686 kg/m³
 - ciment = 350 kg/m³
 - eau d'ajout sur granulats secs = 192 kg/m^3
 - entraîneur d'air = 0,875 kg/m³
- Necessité d'ajuster les autres propriétés (cf. leçon N°11)

Granularité - Diagramme de remplissage

- Pour toute formule simulée, le logiciel peut afficher la granularité globale
- Peut afficher également le diagramme de remplissage
 - étendue granulaire divisée en classes (rapport 1 à 2,5)
 - pour chaque classe, calcule le rapport volume présent/volume maximum de grains
- Exemple: un béton continu et un béton discontinu

Granularité - Diagramme de remplissage (suite)

Nom	des constituants						
24	Matérican déséring de Programme 12 E/20	Simulations					
a 1	Materiaux generiques:cst/concasse 12.3720	Composition		Gâchée n°	1	2	
ā2	Matériaux génériques.cst\Concassé 5/12.5		Gâcher	G1 (kg/m3)	650,6	1023,5	
1	Matériaux génériques est\Boulé 0/5	J55		G2 (kg/m3)	369,8	0	
	Interidux generiques.est a route or o	G2 (%) 0	T and t	S1 (kg/m3)	823,3	824,3	_
21	Matériaux génériques.cst\Ciment CPA CEM I	R1 (%)	Uptimiser	C1 (kg/m3)	350	350	_
P1	Matériaux génériques cst\Superplastifiant mélamine			SP1 (kg/m3)	0	0	-
	Indendus generiques estre aperplastinant medimine	C1 (kg/m3) 350		Eau (kg/m3)	183,9	183,9	_
		SP1 (%)	- Beton n*2	G1 (%)	35	55	_
			DORONTE	G2 (%)	20	0	
		Eau eff (kg/m3) 180	lo int	S1 (%)	40	40	-
			Gr <u>a</u> nularite	Taux de saturation (%)	0,75	0,75	
				Taux de superplastifiant (%)	0	0	
			<u>R</u> emplissage	Eau eff	180	180	
		2		Air total (%)	1,6	1,5	
		Agent entraîneur d'air?		AEA	Non	Non	
		(Non		Rapport G/S	1,239	1,242	
				Eeff/C	0,514	0,514	
		C Oui		Environnement	×0	×0	
				C + kA	350	350	
		Environnement X0 -		Eeff / (C + kA)	0,514	0,514	
				Densité	2,378	2,382	
		Coût five		Temps de stabilisation du wattmètre (s)	91	90	
		look me		Seuil de cisaillement (Pa)	1756	1595	
		% moven en alcalins actifs dans l'eau	0	Viscosité plastique(Pa.s)	146	140	
			10	Affaissement (cm)	10,1	12	
		% maximum en alcalins actifs dans l'ea	au n	Vitesse initiale de ressuage (10-5 m.min-1)	0,36	0,36	
			1-	fc1 (MPa)	16,3	16,1	
				fc2 (MPa)	21,3	21,1	
		Confinement: Aucun		fc3 (MPa)	25,1	24,9	
				fc7 (MPa)	34,1	33,7	
				fc28 (MPa)	45,7	45,2	
				fc90 (MPa)	47,5	46,9	
				fc360 (MPa)	54,6	54	
				ft28 (MPa)	3,5	3,4	
				Ei28 (GPa)	40.4	40.1	- (
							•

Granularité - Diagramme de remplissage (suite)

BétonlabPro 3 - Leçon N°10

Granularité - Diagramme de remplissage (suite)

interprétation: cf. Leçon N°12

BétonlabPro 3 - Leçon N°10

Exportation de données

- Le logiciel peut exporter les données sous forme de tableau
- Une fois les données entrées dans le presse-papier, on les recopie dans un logiciel de type tableur (Microsoft EXCEL, OpenOffice Calc etc.) en utilisant la commande clavier « Ctrl v »
- L'exportation peut concerner des données « Constituants », ou des données « Bétons »

Exportation de données (suite)

🎇 Banque de constituants	
Dossiers disponibles	
Copie de Matériaux génériques.cst essais pompage dk.cst Granulats cst	Nouveau
Matériaux génériques.cst	<u>S</u> upprimer
reouverture temporaire.cst simulations filler calcaire.cst	<u>O</u> rganiser
Constituants disponibles Caillou 5/12,5 Cendre volance	<u>E</u> diter
Liment LPA CEM I Concassé 0/4 Concassé 0/4 poreux	No <u>u</u> veau
Concasse 12.5/20	Supprimer
Concassé 5/20 Concassé 5/20 Filler calcaire Fumée de silice	Exporter
Laitier HF Laitier HF 2	Quitter

Données constituants:

Dans « Banque des constituants », bouton « Exporter »: recopie les données du constituant sélectionné (ici le « Concassé 12,5/20 ») dans le presse-papier

Exportation de données (suite)

🐻 Bét	onlabPro 3				
Fichier	Edition Constituan	ts Sélec	tion Modif	ications ?	
	Copier Ctrl- Effacer Del	HC		_	
	Exporter	•	Les résultai	ts	
G	Composition		TOUC		Gâchée n°
G	G1 (%)	45		<u>G</u> âcher	G1 (kg/m3)
ĪS	G2 (%)	10		0-station 1	S1 (kg/m3)
íc	S1 (%)	45			C1 (kg/m3)
S	C1 (kg/m3)	350			Eau (kg/m3)
Ľ	SP1 (%)	0		Beton n°3	G1 (%)
	Eau eff (kg/m3)	190		Constants	S1 (%)
				Gr <u>a</u> nularite	Taux de saturation (%)
				Remplissage	Eau eff
					Air total (%)
	Agent entraîneur d	air?			AEA

Laboratoire Central des Ponts et Chaussées

Exportation d'une série de gâchées:

- Exporter «Les résultats »: copie le tableau des gâchées dans le presse-papier
- Exporter « Tout »: copie les données des constituants <u>et</u> le tableau des gâchées

Exportation de données (suite)

- Exportation d'une seule gâchée:
 - on clique dans la colonne de la gâchée à exporter
 - elle est alors recopiée dans le presse-papier
 - la commande CTRL v permettra de recopier un tableau à deux colonnes
 - 1° colonne: nom des paramètres
 - 2° colonne: données numériques

Aide en ligne

- BétonlabPro est équipé d'une aide en ligne assez complète
- A tout moment, l'aide contextuelle est accessible par la touche <u>F1</u>
- Pour accéder au sommaire de l'aide en ligne:

🥏 Béto	nlabPro 3																												_ 7	\mathbf{X}
Fichier E	dition Sign	et Options	?																											
Sommaire	Index	Précédent	I <u>m</u> primer	<u></u>	<u>></u> >																									
Vue d'e	nsemble																													
Le logic Betonla	iel Bétonlat b, Bétonlab	oPro permet Pro peut pre	de simuler endre quar	des gâch titativem	ées de bé ent en cor	:on et c apte la	l'en préc spécific:	dire cer cité des	rtaines ; consti	propri ituants	létés à l s locau:	l'état fra x avec l	ais con esquel	nme à l' Is vont	'état dur être fak	ci (l'aff riqués	isseme les bétc	nt et la 1 ns.	résista	nce à la c	ompres	ion à 2	3 jours,	par exe	emple)	. Contra	airement	à son p	rédéces:	seur
Pour en	savoir plus	sur les <u>nou</u>	i <u>veautés</u> d	e la versio	n 3 et la <u>c</u>	<u>ompati</u>	<u>oilité</u> av	zec la v	rersion 3	2.																				
<u>Avertis</u> toute re	<u>sement</u> : les sponsabilit	auteurs de l é en cas de l	BétonlabPi dommages	o ne gara dus au n	ntissent p on respec	as les v t de cet	valeurs o . avertis	des pro ssemen ⁱ	opriétés ıt.	s des t	pétons	obtenu	ies lors	s des si	imulatio	ns ave	: ce logi	ciel. Ce:	s valet	urs doive:	nt être v	érifiées	sur des	gâché	es réel	les de t	béton. L	es auteu	urs déclir	ient
Ce logic grains. I pdf dan	iel met en o La connaiss s le cédéror	euvre des m ance de ces n d'installati	odèles gra modèles r on:	nulaires d l'est pas i	éveloppé: .écessaire	: depui pour p	s plus d ouvoir 1	de 20 ar utiliser	ns au La 7 Bétoni	aborat labPro	toire Ce 1; toute	entral de fois, le l	es Pon lecteur	its et C r intére	'haussé ssé pou	s et no rra trou	tammer wer tou	nt le Mo s les dé	dèle d tails s	Empilem ouhaités	nt Com sur les r	pressibl rodèles	e perm utilisés	ettant d dans l	le calc le logic	uler la c :iel dan	compaci s le livr	té d'un n e inclus	nélange (au forms	de 1t
Structu	es granula	ires et form	ulation de	s betons,	oar Franç	015 de	Larrara	a, n°OA	A 34 de.	is Etud	les et h	kecherc.	hes de	s Labo	oratoire.	des Pi	onts et (:hausse	res, 20	00 [Ref]	Ι.									
complét <i>de Larri</i>	é par l'articl ard F., Sedi	e suivant, p <i>an T., « Le</i> .	lus récent, logiciel B	et qui ré étonlabPi	apitule le 0 3 », Art	s enrich icle sou	iissemen umis au	ents app 1 Bullet	portés i <i>tin d</i> es .	à la ve <i>Labor</i>	rsion 3 ' <i>atoire</i> :	l : s des Pc	onts et	Chau	ssées, A	oût, 20	07 <u>[Ref</u>	5].												
La déma	rche de for	mulation de	s bétons à	l'aide de l	3étonlabF	ro se d	écompo	ose de l	la façor	a suive	ante:																			
▶ détern	ination des	propriétés	des consti	tuants dir	ectement	mesura	bles (ma	lasse v(olumiqu	ue, gra	inularit	é);																		
▶ <u>calibra</u> propriét	<u>tion des pr</u> és sont alor	opriétés des es calées su	granulats. r la base d'	<u>calibratio</u> essais su	<u>n des pro</u> bétons;	<u>priétés</u>	des lian	<u>nts pou</u>	uzzolani	iques ((cendre	es volar	nte, fill	er silic	eux ou f	umée d	e silice)	et <u>calit</u>	bratior	i des proj	riétés c	es laitie	<u>rs</u> qui r	ie sont	pas di	rectem	ent mes	urables.	Ces	
▶ <u>stock</u> a	<u>ge</u> de ces p	ropriétés da	ms la banc	lue de coi	istituants	,																								
▶ <u>sélecti</u>	<u>on</u> du lot d	e constituar	its utilisés	dans les	imulation	s;																								
▶ choix (les <u>options</u>	de calculs (choix des	propriété	calculée:	, coût	ñxe, deg	gré de c	confine	ment);																				
▶ <u>simula</u> visual	<u>tion gâchée</u> iser l'influer	<u>par gâchée</u> ice de chaqi	: l'utilisate ue constitu	ur simule 1 ant sur le	manuellen s différen	ient de tes pro	s gâché priétés (ées suc des bé ⁱ	cessive tons si	es en f mulés.	'aisant . Il perr	varier ju net égal	udicieu lement	isemer de dés	nt les pro grossir u	portio ne fori	ns des o nule en	onstitu vue d'ui	ants a ne opt	fin d'obte imisation	nir les <u>p</u> automa	<u>ropriété</u> ique;	<u>s</u> souh	aitées.	Ce mo	de de s	imulatic	n perme	t de	
▶ <u>optimi</u>	<u>sation</u> auto	matique d'u	n béton: ce	mode de	simulatio	n perm	st d'opti	imiser a	automa	tiquen	nent, p	our un 1	lot de c	constit	uants d	onné, la	compo	sition d	l'un bé	ton répoi	idant à	in cahie	r des c	harges	perfor	mantiel	l défini j	ar l'utili:	sateur;	
▶ vérific	ation sur de	s gâchées o	l'essai des	propriété	s de la for	mule ét	ablie: le	es modé	èles imp	plémer	ntés da	ns Béto	onlabP	ro ne	sont qu	ie des 1	nodèles	. Il est d	lonc ir	ndispense	ble de v	érifier l	s prop	riétés s	imulée	s sur d	les gâch	ées réell	es.	

BétonlabPro 3 - Leçon N°10

Conclusion

- Fonction simulation de BétonlabPro: « laboratoire électronique »
- Possibilité de simuler en peu de temps un grand nombre de gâchées
- Intérêt pédagogique
- On trouve toutes les fonctions classiques d'un logiciel (sauvegarde, manipulation de fichiers, exportations de données, aide en ligne etc.)

Conclusion (suite)

- Cependant, les simulations ne valent pas un essai bien fait
- En règle générale, toute propriété spécifiée doit être vérifiée par une <u>mesure</u>

